53 research outputs found

    Outcome Prognostic Factors in MRI during Spica Cast Therapy Treating Developmental Hip Dysplasia with Midterm Follow-Up

    Full text link
    Closed reduction followed by spica casting is a conservative treatment for developmental dysplasia of the hip (DDH). Magnetic resonance imaging (MRI) can verify proper closed reduction of the dysplastic hip. Our aim was to find prognostic factors in the first MRI to predict the possible outcome of the initial treatment success by means of ultrasound monitoring according to Graf and the further development of the hip dysplasia or risk of recurrence in the radiological follow-up examinations. A total of 48 patients (96 hips) with DDH on at least one side, and who were treated with closed reduction and spica cast were included in this retrospective cohort study. Treatment began at a mean age of 9.9 weeks. The children were followed for 47.4 months on average. We performed closed reduction and spica casting under general balanced anaesthesia. This was directly followed by MRI to control the position/reduction of the femoral head without anaesthesia. The following parameters were measured in the MRI: hip abduction angle, coronal, anterior and posterior bony axial acetabular angles and pelvic width. A Graf alpha angle of at least 60° was considered successful. In the radiological follow-up controls, we evaluated for residual dysplasia or recurrence. In our cohort, we only found the abduction angle to be an influencing factor for improvement of the DDH. No other prognostic factors in MRI measurements, such as gender, age at time of the first spica cast, or treatment involving overhead extension were found to be predictive of mid-term outcomes. This may, however, be due to the relatively small number of treatment failures

    Process variations between Swiss units treating neonates with hypoxic-ischemic encephalopathy and their effect on short-term outcome

    Full text link
    OBJECTIVE: To compare therapeutic hypothermia (TH) treatment of term and near-term neonates with hypoxic-ischemic encephalopathy (HIE) between neonatal units. STUDY DESIGN: Population-based, retrospective analysis of TH initiation and maintenance, and of diagnostic imaging. The comparison between units was based on crude data analysis, indirect standardization, and adjusted logistic regression. RESULTS: TH was provided to 570 neonates with HIE between 2011 and 2018 in 10 Swiss units. We excluded 121 off-protocol cooled neonates to avoid selection bias. Of the remaining 449 neonates, the outcome was favorable to international benchmarks, but there were large unit-to-unit variations in baseline perinatal data and TH management. A total of 5% neonates did not reach target temperature within 7 h (3-10% between units), and 29% experienced over- or undercooling (0-38%). CONCLUSION: Although the neonates had favorable short-term outcomes, areas for improvement remain for Swiss units in both process and outcome measures

    Toward Seamless Transitions Between Shared Control and Supervised Autonomy in Robotic Assistance

    Get PDF
    Assistive robots aim to help humans with impairments execute motor tasks in everyday household environments. Controlling the end-effector of such robots directly, for instance with a joystick, is often cumbersome. Shared control methods, like Shared Control Templates (SCTs) [1] , have therefore been proposed to provide support for robotic control. Moreover, depending on factors such as workload, system trust or engagement, users may like to freely adjust the level of autonomy, for instance by letting the robot complete a task by itself. In this letter, we present a concept for adjustable autonomy in the context of robotic assistance. We extend the SCT approach with an automatic control module that allows the user to switch between Shared Control and Supervised Autonomy at any time during task execution. As both support modes use the same action representation, transitions are seamless. We show the capabilities of this approach in a set of daily living tasks with our wheelchair-mounted robot EDAN and our humanoid robot Rollin? Justin. We highlight how automatic execution benefits from SCT features, like task-related constraints and whole-body control

    Mutual Projectile and Target Ionization in 1-MeV/amu N⁴⁺ and N₅⁺+ He Collisions

    Get PDF
    We have studied mutual projectile and target ionization in 1-MeV/amu N4+ and N5++He collisions in kinematically complete experiments by measuring the momenta of the recoil ion and both ejected electrons in coincidence with the charge-changed projectiles. By means of four-particle Dalitz plots, in which multiple differential cross sections are presented as a function of the momenta of all four particles, experimental spectra are compared with theoretical results from various models. The experimental data are qualitatively reproduced by higher-order calculations, where good agreement is achieved for N5++He collisions, while some discrepancies persist for N4++He collisions

    A Robotic System for Solo Surgery in Flexible Ureterorenoscopy

    Get PDF
    Urolithiasis is a common disease with increasing prevalence across all ages. A common treatment option for smaller kidney stones is flexible ureterorenoscopy (fURS), where a flexible ureteroscope (FU) is used for stone removal and to inspect the renal collecting system. The handling of the flexible ureteroscope and end effectors (EEs), however, is challenging and requires two surgeons. In this article, we introduce a modular robotic system for endoscope manipulation, which enables solo surgery (SSU) and is adaptable to various hand-held FUs. Both the developed hardware components and the proposed workflow and its representation in software are described. We then present and discuss the results of an initial user study. Finally, we describe subsequent developmental steps towards more extensive testing by clinical staff

    Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas

    Get PDF
    Most genome-wide association studies (GWAS) were analyzed using single marker tests in combination with stringent correction procedures for multiple testing. Thus, a substantial proportion of associated single nucleotide polymorphisms (SNPs) remained undetected and may account for missing heritability in complex traits. Model selection procedures present a powerful alternative to identify associated SNPs in high-dimensional settings. In this GWAS including 1060 colorectal cancer cases, 689 cases of advanced colorectal adenomas and 4367 controls we pursued a dual approach to investigate genome-wide associations with disease risk applying both, single marker analysis and model selection based on the modified Bayesian information criterion, mBIC2, implemented in the software package MOSGWA. For different case-control comparisons, we report models including between 1-14 candidate SNPs. A genome-wide significant association of rs17659990 (P=5.43x10(-9), DOCK3, chromosome 3p21.2) with colorectal cancer risk was observed. Furthermore, 56 SNPs known to influence susceptibility to colorectal cancer and advanced adenoma were tested in a hypothesis-driven approach and several of them were found to be relevant in our Austrian cohort. After correction for multiple testing (alpha=8.9x10(-4)), the most significant associations were observed for SNPs rs10505477 (P=6.08x10(-4)) and rs6983267 (P=7.35x10(-4)) of CASC8, rs3802842 (P=8.98x10(-5), COLCA1,2), and rs12953717 (P=4.64x10(-4), SMAD7). All previously unreported SNPs demand replication in additional samples. Reanalysis of existing GWAS datasets using model selection as tool to detect SNPs associated with a complex trait may present a promising resource to identify further genetic risk variants not only for colorectal cancer

    Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers

    Get PDF
    Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes

    Model-Augmented Haptic Telemanipulation: Concept, Retrospective Overview, and Current Use Cases

    Get PDF
    Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
    corecore